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three and N dimensions, by using perturhative and 
non-perturbative methods 
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Received 8 November 1990, in final farm 15 April 1991 

Abstracl. The energy levels of the Schradinger equation involving various model potentials 
in two, three and N-dimensional space, are calculated by using perturbalive and non- 
perturbalive methods. Our methods have been used effectively to calculate the energy 
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1. Introduction 

The purpose of this paper is t o  compute the energy eigenvalues for the one-particle 
SchrGdinger equation for various forms of potentials in N = 2,?, dimensions fnr a 
wide range of values of perturbation parameter A and states number, by using perturba- 
tive numerical techniques such as the renormalized series and the inner product as 
well as the non-perturbative the power series technique. These potentials can be written 

u(x,  y )  = f ( ~ ~ + y ~ ) f A ( a , , x ~ + + 2 a , , x ~ y ~ + a ~ ~ y ~ )  (1) 

g( I )  = r *+  !!! + ! ) r p +  n r 2 M  (2M=4,h ,R)  (2) 

U N (  r )  = r'+a[( N +2! -3 ) (  N + 2 / -  l ) ] r - * +  h r 4  (3) ( N =  1 , 2 , 3 , .  . . ,1000). 

It is important to point out that the form of the potential given by equation (3 )  is a 
general form for the case of a spherical symmetric potentials, which can expressed the 
other forms of the potentials given by equations (1) and  (2) in two and three dimensions. 

( 1 )  and (2) respectively. For spherically symmetric states in N dimensions the 
Schrodinger equation generalizes to the form 

( - ~ + r ' + 4 ( N + 2 / - 3 ) ( N + * / - l ) r - * + ~ r ~ ~  d r -  ) v(r)= E q ( r )  2 M = 4 , 6 , 8 .  

Fsr .N = 2 , Z  the pt&;I! given by q..tiQn (3) reduces to potentials given hy equa!ions 

(4) 

by studying the form of the Schrodinger equation in one  and two dimensions, we 
found that the form of the equation (4) can be used in one, two or three dimensions 
by making the appropriate choice of I .  In  three dimensions I is the usual angular 
momentum value (0, 1 , 2 , ,  . .). I n  two dimension I is set equal to Jml - f ,  where m is 

45:s nlnl  ""7"i"l / I n " E l i i l l P n ?  C" m ,001 , n o  D.,l.lir*in" I .A ",",..*.I," ,,,, ,l*.,,, , ,,*",.," 1 1 1 1  .", , 
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the magnetic quantum number. In  one dimension I is set equal to ( I = O ,  1) and r 
replaced by x. 

Our work also is intended to point out the flexibility of the inner product perturbation 
theory, which gives it an advantage over the renormalized series method. 

One main difference between the two perturbative techniques is that the hypervirial 
method can only work for the case of a symmetric potential a , ,  = a2>= a,2 = 1 in which 
the potential reduces to a one-dimensional potential. It is noteworthy that although 
hypervirial approach is very attractive for the one-dimensional problem, its application 
to a system of many dimensions has not yet been accomplished, but the inner product 
method deals with more general parameter values a , , = a , , = I , O ;  a,>= 1,0, -1. We 
faced convergence difficulties in dealing with perturbative methods, but overcame this 
situation by using the renormalization parameter to improve the convergence of the 
perturbation series to give results with good accuracy. 

111G PuuLLuauL..c U1 >LU"LCJ U1 LIIG u I I c : - U I I I I = I I J I u l l P 1  dllllP,lllU,,,L " S b l l l d L U I  r;rgc,rvarus 
problem is not matched in the case of multidimensional problems, for which there are 
few reported results in the literature. Many techniques have been used to obtain the 
energy eigenvalues for the two-dimensional potential u ( x ,  y ) .  The work of Hioe e$al 
(1978) involved matrix diagonalization. They were able to calculate energy eigenvalbes 
for different values of A and for various quantum numbers. To obtain high accuracy 
by their methods involves dealing with large matrices together with using an appropriate 
scaled transformation to improve the convergence of their results, Blankenbecler et a1 
(1980) used the inner product method to calculate the energy eigenvalues for the 
two-dimensional oscillator, involving the study of recursion relations between matrix 
elements of powers of the coordinate operator between the exact eigenstate and a 
conveniently chosen basis state. Ari and Demiralp (1985) computed the eigenvalues 

Killingbeck and Jones (1986) used the inner product method to calculate accurate 
energies for six states, E,,,, E , , , ,  Eo,2, E2.0. E , , ,  and E, , , ,  for different values of 

Killingbeck (1985a) has used the Hill determinant method to calculate the energy 
eigenvalues for a three-dimensional oscillator and also investigated all spherically 
symmetric states in any dimension ( N  = 1,2,3, ,320). He computed the energy 
eigenvalues and expectation values such as ( r 2 )  for potentials /-'r4 and N - ' r 4  and 
gave results of good accuracy. We used three methods, the inner product method, the 
renormalized series method, and the power series method to calculate the eigenvalues 
for the potentials given above. In two dimensions we computed the eigenvalues for 
different values of the potential parameters ( a , , ,  a22 ,  a d  and for many eigenstates 

computed the eigenvalues for high values of the state number n, for various values of 
the angular momentum /, perturbation parameter A, and for different power indices 
( 2 M  = 4,6,8). We also calculated the s-state energy eigenvalues for spherically sym- 
metric states in N dimensions. The results are compared with those produced by 
different methods which can be used to calculate energies for the same perturbed 
potentials. The results showed a good agreement with each other or with those (when 
available) in the literature. This paper is organized as follows. Section 2 is concerned 
with the two-dimensional oscillator, and contains all the necessary equations and 
recurrence relations to calculate the energy eigenvalues for different eigenstates. 
Section 3 is concerned with three- and N- ( N  = I ,  2,3,4,5,6, .  . . , 1000) dimensional 
oscillators and with relations which can be used to compute the energy eigenstates. 

TI-.- ..!-..̂ A ^_^^  ..,-"...A:-" ^P*L^ --- A:-e..":-..-, ..-L ^__^_ :- - " " : , , - . - - - : - - - . . - I _ _ ^  

-0 I ...- A:.-o..,.:--n8 ..-,.:ttn&-- h.. ..-:.._ -nn..-hot:n- th- --., --.A D-AL n--r~..:-m-+o 
U, P ,wu-"IIIIcillJIuLIPII UJCLII.%,UI uy YJ"1E. y c L ' u L " ' L 1 " "  L ' L C V L J  PllY L (LUG P ~ ' Y L " " " " P L " L " .  

(a l l ,  a22r a d .  

I C  I"nl,n2ii,, f i ,=G,  :, 2,;j, Ovei a wid2 iangi of A valties. :n :bee dimensions we 
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2. Two-dimensional problem 

2.1. Review of the two-dimensional oscillator problem 

In this section we present some extended numerical calculations using the inner product 
technique for a greater range of values of the perturbation parameter 0.05 S A C 5000, 
and for different values of the potential parameters ( a , , ,  a22 ,  a , 2 ) .  The inner product 
method to calculate eigenvalues has been investigated (Witwit 1990) to compute energy 
eigenvalues for the two-dimensional problem for higher powers of the perturbation 
v ( x ,  y) =A(ax6+3bx4y2+3cx2y4+dy6) ,  and later (Witwit 1991) for three dimensions. 
We also used renormalized series and power series methods, for the special case 
a , ,  = aZ2= a I 2 =  1 ,  to calculate the energy eigenvalues for the perturbed oscillator 
potential in two dimensions. The potential given by equation (1) is non-separable but 
shows a high symmetry. The energy perturbation series is expected to be divergent, so 
we start by introducing a renormalization parameter (p ) ,  and write the potential in 
the form 

V ( x ,  y)  = fp2 (x '+y2)+A[a , ,x4+2a , ,x2y2+  ~ ~ ~ y ~ - p ( x * + y * ) ]  ( 5 )  

p2= 1 + hp. ( 6 )  

Setting p = 0 in the perturbation calculation gives the traditional Rayleigh- 
Schrodinger series for the problem and ensures that the form of the potential in (5) 
is the same as the original potential in ( 1 ) .  The use of the renormalization parameter 
p is helpful in improving convergence in this technique, and this parameter has played 
an important role in the convergence aspects of the calculations which are investigated 
in the work of Witwit (1989). It is interesting to point out that the effect of varying 
the parameter p is to allow us to obtain results of high accuracy as we will see later. 
In rectangular coordinates the Schrodinger equation for the renormalized potential 
V ( x ,  y) ( 5 )  can be written 

where 

[ -L(K+4) + V ( x ,  y)]Y(x, y ) =  E Y ( x , y ) .  
2 ax2 ay (7) 

The energy eigenvalues of the unperturbed oscillator are given by 

E#, ,n2=(ni+n2+1)  n , ,  n2 ,  =o, 1 , 2 . .  , , ( 8 )  

In each state the energy levels depend on the pair quantum numbers ( n , ,  n z ) .  The 
energy levels are degenerate, because the sum 

( 9 )  n ,  + n2 = n. 

2.2. The recurrence relation for the inner product 

To find the recurrence relations which allow us to calculate the eigenvalues we use 
the function: 

(10) 
PI P2 @(X,Y)=(X Y ) e x ~ [ - f w ( ~ ~ + y ~ ) ]  

where p ,  and p2 are parity indices, with values 0 for even parity and 1 for odd parity. 
The inner products 

( 1 1 )  
3M IJ A(J ,  M )  =(@lx- Y I*) 
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play a key role in this technique. The next step is to work out the quantity 

E A ( M , J ) = ( ' Y ( H x ' ~ ~ ~ ' ( ~ )  (12) 

and then to substitute the perturbation expansions 

A ( M , J ) = E A ( M , J ,  K ) A K  (13) 

E = I E ( I ) A '  (14)  

K 

I 

into the A ( M ,  J )  recurrence relation (12). The result is the new recurrence relation 

Z E ! I ) A ( M , J , K - I )  
k 

=.-.A/Mt2,J,K-!)+nii,~!.hlJ+?,I(-!) -,,. .,.. ~ 

+ a , , A ( M + l , J + I ,  K - l ) - P A ( M + I , J ,  K - I )  

+ 4 p ( M  + J - S ,  -SJA(M,  J ,  K ) - 2 M ( 2 M + 2 P ,  - 1)A( M - I ,  J, K )  

-2J(2J+2P2- I )A (M,  J - I ,  K ) .  (15) 

In writing relation (15) we have moved one term E ( O ) A ( M ,  J, K )  from the sum over 
I to the right of the equation, and have expressed the unpertrubed energy in the form 

E(O) = p(2+2P,+2P2+4S,  +4S2). (16) 

The unperturbed energy, given by equation (161, must fit with equation (8). The parity 
indices for x and y are P, and P2( (0 or 1). The x and y state numbers S,  and S2 
(0, 1, Z), specify which particular state is being treated. When P, = Pz,  we can further 
specify an x-y.  interchange symmetry index P3 (0  or  1) such that 

(17) A(J, M ,  K )  = (-1)'3A(M, J,  K ) .  

The initial condition imposed on the A(J, M, K )  if P, = P2 is 

A ( S , ,  S,, 0 )  = (-I)'3A(S2, S , ,  0 )  = 1 (18) 

and the recurrence relation (15) is then used as follows. If the energy sum up to 
E(Q)A' is required, then the indices have the ranges set out below if P, = P., with 
the convention S, S S, on the state labels: 

K = O ,  1 , 2 , .  . . Q 

!firedK) 

(fixed K, J )  M = 0, 1, . . . , J - P3 

The indices are scanned in the order given above and the relation (15)  is used to work 
out A ( M , J ,  K )  in term of lower-order elements which are already known. Then we 
can get A(J, M, K )  from the symmetry relation (.17). E ( K )  is found from the equation 
(15) for the special case M = S , ,  J = S , ,  because in this case relation (15) is used 
differently and the sum on  the left-hand side becomes E (  K ), because o f  the intermediate 
normalization convention A(&,  S,) = 1 which we impose on the algorithm, this gives 
the value of the energy coefficient E ( K )  in terms of already calculated elements of 
the A(J, M ,  K )  array. The sum of the energy perturbation series can then be calculated 
term by term, and p is varied to give the best possible convergence o f  the perturbation 
Seiies. 

J = O , ! , 2  , . . . , -  .Q+ ' . - ~  7 0 - 2.K 
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2.3. The recurrence relation f o r  the renormalized series approach 

The renormalized series method has been found to work very well in previous work 
and has produced highly accurate results for the problems investigated by Witwit 
(1989). AS indicated previously the renormalized series can be used to compute the 
energy eigenvalues for equation (7) in some cases. When the relationship a , 2 =  a , ,  = 
a,,= 1 holds, the equation ( 7 )  has a circular symmetry. The  energy levels are then 
most appropriately characterized by the quantum numbers (n,, m) rather than ( n , ,  n 2 ) .  
Letting x = r cos 8, y = r sin 8, such that r2 = x’+y’ ,  the radial part of the eigenvalue 
equation (7) is 

d r  r- 

If we set 

V ( r ) = [ r ] - ” * @ ( r )  (20) 

we get 

V,,, = ( m ’ - ~ ) r - ’ + r 2 + 2 h r 4  (22) 

-(m2-’) r ->+( p - A p ) r 2 + 2 h r 4  p = I + A P .  (23) 

The Schrodinger equation (21) and V,,, can written directly from the equation (4) for 
the case N = 2  as indicated previously in the beginning of the introduction. If we use 
the perturbation expansions 

E = E E ( l ) h ’  (24) 

(x’)=LA(J, M)AM (25) 

in the hypervirial relation given by Killingbeck (1985bj i n  the form 

2 E ( J +  I)(x’) = E  V,(25+2+ I ) ( x ’ + ’ ) - - ( J Z -  l)(x’--L) 
J 
2 (26) 

and apply the Hellmann-Feynman theorem in the form 

to the potential given by (23), we get the following recurrence relation after some 
algebra: 

M 
(2J+2)  1 E(I)A(J,  M - I )  

0 

= J [ ( m ’ - + ) - $ ( J ’ -  l)]A(J -2 ,  M)+(J+4)  

x[pA(J+2 ,  M)-PA(J+2 ,  M - I ) ] + ( 2 5 + 6 ) A ( J ,  M - I )  (28) 

( M + l ) E ( M + l j =  A(4, M)-PA(2 ,  MI.  (29) 
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From the recurrence relations (28) and (29), we can find the energy coefficients with 
the help of the unperturbed energy E(0)  and the initial coefficient B(0,O) = I .  The 
unperturbed energy is 

(30) 

As in (8) we find again the degeneracy of the same multiplicities, where n is the 
principal quantum number, which can be expressed as 

E ( 0 )  - ( n  + I)&. 

n = 2n, + Iml 

= n , + n ,  

n,  = 0, 1 ,2 ,3 ,  

m =0, TI,  T2, 

where n, and m are the radial quantum number and the magnetic quantum number. 
The expression (2n,+lml + 1) shows that a degeneracy exists between energy levels to 
the degree that all allowable combinations of n, and m consistent with the same values 
of the m and n, yield the same energy levels. For example E l , ,  and E2,,, have the same 
quantum numbers (n,= 0, m = 2)  and have the same perturbed energy eigenvalues 
when the relationship a,> = a , ,  = a12 = I holds, but this degeneracy removed when 
a , ,  = a22 = 0 and a,2 = 1 and this is confirmed by our results and the results given by 
Hioe et a /  (1978) and Killingbeck and Jones (1986) that perturbation energies for these 
two eigenstates have the same perturbed energy eigenvalues ( E l , ,  (even) = E2.0 (odd)), 
which means that the energy levels for these eigenstates crosses at a , 2 = a l l  = 1, 
but when a ,  I = aZ2 = 0, a,2 = 1 the doubly degenerate level splits into two levels. 

2.4. The power series method 

The use of non-perturbative methods of computing energy eigenvalues is necessary 
because the perturbative method provides insufficient information about accuracy and 
has convergence difficulties. Recently Witwit (1989) has applied the power series and 
finite difference methods to various eigenvalue problems. In the present problem we 
use the power series method to compute the energy eigenvalues in two-dimensions for 
the case ( a , 2  = a , ,  = a22 = 1). We start from the Schrodinger equation (21). The regular 
solution to equation (21) will behave as r’ near the origin, so we postulate @ ( r )  to be 
of the form: 

and use the notation 

1 T ( J ) = x A ( J ) r ’ .  (32) 

Inserting these relations (31) and (32) into equation (21) yields the recurrence relation 

( J  + 2)[J + 21 + 31 T(J  + 2) 

= [ (2J + 21 + 3)p - E ]  r2 T ( J )  + [ p  - p 2] r4 T(J - 2 )  + Arb T ( J  - 4) (33) 

where / = l m l - i .  
The calculation starts at J = 0, with T ( 0 )  = 1 and with all lower coefficients zero. 

The power series approach works out each T ( I )  and the sum of the T ( J )  at a specific 
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r value. The method works out the sum X T ( J )  for two neighbouring energies E and 
E + H, and finds the energy which would make the sum zero. The calculation as set 
out above finds eigenvalues appropriate to the Dirichlet boundary conditions 'U( r )  = 0, 
with r approaching infinity (or sometimes for some finite r ) .  H is typically In 
this approach we also have a convergence factor exp(-px2), and the choice of the p 
parameter helps to achieve or improve convergence. 

2.5. Results and discussion 

In this subsection we investigate and discuss the results of the numerical calculations 
for the two-dimensional systems. It is clear from our results which are calculated by 
perturbative methods and listed in tables 1-41 that the accuracy can be expected to 
decrease as A increases. Let us now turn to the renormalization parameter p which is 
the heart of this calculation for perturbative methods. We can see from the results that 
the accuracy depends on the value of the renormalized parameter p. One continues 
to change the renormalized parameter until energy eigenvalues of the best required 
accuracy are obtained. The values of energy in table 1 are for the case a , ,  = a ,  I = a22 = 1; 
we show some energies for states n , ,  n ,  = 0, 1,2,3, and for 0.05 < h < 5000. The three 
approaches work very well for the two-dimensional oscillator, and the results obtained 
by these methods are in good agreement with each other. We observe that the three 
approaches yield the eigenvalues at low values of A with 14-digit accuracy. For higher 
values of the perturbation parameter A the power series method gives greater accuracy 
than the inner product method and a renormalized series method. 

One main difference between the two perturbative techniques lies in the values of 
the renormalization parameter. For the hypervirial approach the values of p increase 
as the perturbation parameter increase, while for the inner product method the values 
of p decrease as the perturbation parameter increases. Also the hypervirial method 
can only work for the case of a symmetric potential a , ,  = = a,>  = 1 in which the 
potential reduces to a one-dimensional potential. The inner product method deals with 
more general parameter values, but still requires a , ,  = a Z 2 .  since the equations used 
exploits this symmetry to reduce computation. To get the energy eigenvalues of 
Killingbeck and Jones (1986) in table 1 it is necessary to multiply our values by 2, 
since they used -Vz in their Hamiltonian. All numerical calculations were done on 
the ICL (VME) system using double precision arithmetic. A good rate of convergence 
was achieved for all techniques and this was relatively insensitive to the choice of the 
state number. We can summarize our results as follows: 

(i) We succeeded in finding the energy eigenvalues for eight eigenstates E,,", E, , , ,  
E , , , ,  E,,,, E,,,, E,,,,  E ,,,, E,,l, with excellent accuracy in two dimensions even for 
high values of A (0.05 < A  s 5000) and for different values of the potential parameters 
( a , * =  1, - l , O ) ,  ( a , , = a , , =  1.0). The set of tables 1-4 covers a wide range of values 
of A .  

(ii) We have found that the three methods work very well to determine the energy 
eigenvalues, and give high accuracy. Our results are in good agreement with other 
reported results given by Killingbeck and Jones (l986), Ari and Demiralp (1985) and 
Hioe et al (1978). 

t Tables 1 and 3-9 of this paper have been deposited in the British Library Supplementary Publications 
Scheme. document no SUP70044. 
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Table 2. Energy eigenstntes for the potential VCx, .e) = hx’y’. calculated using the inner 
product melhod. 

( even) 

~ 1 4 8 1 1 l 1 1 0 . 1 2  56 93 1 p46]p/ a 2 . 6 5 3 9 1 0  
2.73732 

m 5 . 4 6 1 1  
11.23 
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(iii) We avoid the phenomenon of false convergence by computing the energy 
eigenvalues for different values of the renormalization parameter p. We believe that 
same of our results may be improved in accuracy with a better choice of p. 

(iv) We calculated the energy eigenvalues for 68 states for the symmetric potential 
V(r)=(m2-:)rF2+2r4 by using the power series method for high quantum numbers 
(0 s m < 400) and ( 1  s n S 600). This approach produces 20-digit accuracy and the 
results are presented in table 4. We mention that the results yielded by the inner product 
were improved by using Aitken extrapo!ation; it seems that such extrapo!a!ion improves 
the convergence of the perturbation series and gives extra digits of accuracy. 

3. Three and N dimensional problems 

We used two methods to produce our results for this problem, the renormalized series 
method and the power series method. We extended our numerical calculations for 
higher powers of the perturbation index ( 2 M  = 4,6,  8), and for a wide range of values 
of angular momentum, perturbation parameter and state number. The radial part of 
the three-dimensional Schrodinger equation can be written conventionally in the form 

where u ( r )  is given by equation (2), or insert N = 3 in the potential given by equation 
(3). We can write u ( r )  in another form by using the renormalization parameter p 
V(r) = fir2+ I( /+ l)r-2+A(r2M - pr’) (2M=4,6 ,8)  fi=l+Ap (35) 
where I is the angular momentum, and the energies of the unperturbed levels are 

E ( 0 )  = ( 2 n  + 3 ) 4  (36) 

n = ( 2 n , + I ) .  (37) 

where n is the principal quantum number, which can be expressed as  

Here n, is called the radial quantum number. The energy values include a zero-point 
energy of 3 corresponding to the three degrees of freedom. II is seen to be even or  
odd according as i is even or odd. The main difference between one- ana three- 
dimensional perturbations lies in the presence of the angular momentum term. We 
have presented two methods to compute energy eigenvalues. The first approach uses 
a hypervirial scheme based on the formulation of appropriate recurrence relations, 
and the second approach uses a power series, based on relations derived by using 
wavefunctions. 

3.1. Renormalized series to calculate energy eigenvalues for 
H = P2+r2+1(1+ 1)rC2+ ArZM (2M = 4 , 6 ,  8) 

We used renormalized series to calculate the energy eigenvalues for the potential given 
by equation (35). Using the hypervirial recurrence relations (26), the Hellmann- 
Feynman theorem (27) and the perturbation expansions (24) and (25)  with the potential 
terms 

v-, = /(I+ 1) (38) 

V> = ( f i -  V ) (39) 

V,, = A  2 I  = 4 , 6 , 8  (40) 
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we obtain the following recurrence relations after some algebra 

M 

(2J+2)  1 E ( J ) A ( J ,  M - J )  
0 

=J[21(l+ I )  -f(J’- l ) ] A ( J  -2 ,  M ) +  ( Z J + 4 )  

X [ p A ( J + 2 ,  M ) - p A ( J + Z ,  M -  I ) ]  

+ [ZJ +21 + ~ ] A ( J + ~ I ,  M - I )  (41) 

( M +  I ) E ( M +  I )  = A(21, M )  -PA(& M )  (42) 

The recurrence relations (41) and (42)  suffice to compute the coefficients of energy 
€ ( M I  and A ( J ,  M )  and this procedure allows us to calculate the expectation values 
of powers ( r ’ )  without the explicit use of eigenfunctions. The input for our calculations 
are the renormalized parameter p, the angular momentum I and the state number n. 
The values of p = i +A@,  E ( 0 )  = (4n,+21+3)&, are worked out by the program. The 
renormalized series approach seems to give results of excellent accuracy, whereas at 
p = 0 the perturbation series diverge and do not give satisfactory numerical results. 

( 2 1  = 4,6, 8 ) .  

3.2. The power series approach 

We use the power series method to compute the energy eigenvalues for the three- 
dimensional perturbed oscillator, and this method works very well, producing results 
of high accuracy, even for large perturbation parameters. The regular solution to 
equation (34)  will behave as r‘ near the origin. Inserting the relations ( 3 1 )  and (32) 
into equation (34)  yields the recurrence relation 

( J + Z ) [ J +  21+3]T(J+Z) 

= [ (21+21+ 3 ) p  - E ] r 2 T ( J )  + [p - p 2 ] r 4 T ( J  - 2 )  

+ AT(J-2M)r2M+2 ( 2 M = 4 , 6 , 8 ) .  (43) 
TL- ..-t,...l,.d,.- -&--.- r - n  ... :+L T / n \ - - l  -..-I - 1 1  I -,.-eE^:--.- ---- ins C L I G U I ~ U U I  J L L ~ L J  8: J -U, w i i n  2 \U, - I ,  auu au i v w ~ i  CVGIIICICIIID LCIV  

3.3. N-dimensional calculation by using renormalized series 

We used the renormalized series approach to calculate the energy eigenvalues. If  we 
apply the hypervirial recurrence relation given by equation (26) ,  the Hellmann- 
Feynman theorem (27)  and the perturbation series given by equations (24 & 2 5 )  to 
the potential given by equation ( 3 )  we get the following recurrence relations: 

M 

(21+2) 1 E ( J ) A ( I ,  M - J )  
0 

lr,., , * I  -\,-... , ..I - _  - Lliv - rL l  - 3 j l L i v  T L t  - i )  - [ l 2  - i ) j  Ai;  -2, X) i ( 2 ;  +;) 
2 

X [ p A ( I  + 2, M )  -PA( I +2,  M - 1)]+(21+6)A( I +4, M - 1) (44) 

( M +  l ) E ( M + l )  = A ( 4 ,  M ) - p A ( 2 ,  M ) .  ( 4 5 )  



4546 M R M Wifwil 

Here N is number of dimensions. The recurrence relations (41) and (42) for three 
dimensions reduce to the recurrence relations (44) and (45) if we insert I =  
(N+21-3)/2. It is clear now that from relations (44) and (45) we obtain the full set 
of A and E coefficients starting from the unperturbed energy 

(46) 
and the initial condition A(0,O) = 1. The convergence properties of the perturbation 
series are controlled by varying p. We also used the power series method to calculate 
energy eigenvalues for the N-dimensional problem; by inserting I =  (N+21-3)/2 in 
relation (33) we obtain the relation corresponding to N dimensions: 

E ( 0 )  = (4n + 2 / +  N ) G  

( J  +2)[5 + N+21]T(J +2)  

= [ ( 2 5 +  N+21)p  - E ] r 2 T ( J ) + [ p - p 2 ] r d T ( J  - 2 ) + A r 6 T ( J  -4). (47) 

3.4. Results and discussion 

We have used the techniques described in this work, the renormalized series and power 
series methods, to compute the energy eigenvalues for spherically symmetric states in 
three and N dimensions. The results are given in tables 5-9. Our energy eigenvalues 
cover a large range of values of angular momentum, perturbation parameter A and 
state number n. We have performed various numerical checks on the obtained energy 
eigenvalues. For example, we did some calculations at zero value of angular momentum 
and at I = -1. At these values the problem reduces to a one-dimensional problem for 
odd- and even-parity states respectively. Also the power series approach has been used 
as another approach to compute the energy eigenvalue, and the agreement between 
the results is very good. We list some results in table 5 for different values of angular 
momentum and state number. We note particularly that in the case of high values of 
angular momentum the renormalized series approach works well. We notice from 
table 5 that for ( A  = 100, I = 100, n = 20) the accuracy of this approach achieves 12 
significant figures. To our knowledge such a high degree of precision for the potentials 
considered is unprecedented. We also wish to draw attention to the fact that the 
renormalized series approach applies equally well to any value of ( A ,  I ,  n). Our calcula- 
tions in three dimensions may be regarded as a guide to future numerical calculations. 
As far as we know, we are the first to investigate numerically the energy eigenvalues 
for a wide range of potential parameters in  three dimensions. A sample of energy 
eigenvalues for potentials in three dimensions computed by using renormalized series 
and power series methods are displayed in table 6 for different values of angular 
momentum and state number n. These methods lead to very accurate results. We have 
also calculated the energy eigenvalues for higher power of the perturbation index 
( 2 M  =6,8). The renormalized series method was used to compute the energy eigen- 
values for ( 2 M  =6),  n, I = O ,  1,2,3,4 and A =0.1. This method achieved six-digits 
accuracy; the renormalized series method has limited capability to deal with high 
powers ( r 2 M ,  2M = 8 )  and we could only manage to calculate a few energy eigenvalues 
with a low accuracy. In this respect we face the same situation as  forthe one-dimensional 
oscillator in dealing with high powers of perturbation (see Witwit 1989). However, the 
power series method works excellently and gives results with 16-digits accuracy. We 
also computed the energy eigenvalues for s-states in ( N  = 1,2,3,  . . . , 1000) dimensions 
for potentials V( r )  = Nr4, N- ' r4 .  The renormalized series work very well for calculating 
the energy eigenvalues even for higher values of M. The energy eigenvalues are 
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compared with corresponding ones obtained by the power series method and listed in 
table 8. The agreement of our results with those of Killingbeck (1985) is good. 
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